Paintrobot “Bob Rob”

1t Stahl Manuel

Awesome Technologies Innovationslabor GmbH

Wiirzburg, Germany
manuel.stahl @awesome-technologies.de

Abstract—This document provides a technical report for the
‘paintrobot’ project, which enables the industrial manipulator
model ‘URS’ by Universal Robots to paint specifically prepared
vector images in .svg-files with wet paint on a canvas. The
theory can of course be used for other manipulator models. The
source code and the required models for laser-cutting and paint
tool have been published open source [9]. What do robots dream
of? Do they want to paint electric sheep? Find it out.

Index Terms—industrial robots, painting, art, open source

I. INTRODUCTION

‘Can robots create art?’” By investigating this topic for an ex-
hibition at the German festival ‘Kunsttage Sommerhausen’, the
authors came across the problem that no library for painting
with an industrial manipulator has been found open source in
the internet. Especially for artist or designers, the capability to
paint with a robot could be enriching and expand their current
capabilities, but it is not altogether easy to implement without
specific knowledge in robotics. This is why an open source
framework has been created and published, so that similar
projects as the paintrobot ‘Bob Rob’ can be generated in order
to motivate the discussion between art and robotics. Within
the expedition, in which the first installation was used (the
aforementioned ‘Kunsttage Sommerhausen’), the approach has
proven to stimulate a broad discussion concerning society and
the possibilities of technology.

This technical report serves as an introduction to the project
and a helping hand in using the framework. It briefly discusses
the theoretical background of the underlying robotics problem
(section one) and provide a brief overview to artistic projects
with robots and artificial intelligence (section two). The used
setup is described in section 3. After the specification of the
currently supported vector images and possibilities to create
new images are highlighted in section 4, the use of the library
itself is described in section 5. The document finishes with a
summary and ideas for future work.

II. ROBOTICS BACKGROUND

The underlying problem is explained in Figure[I]and is well-
known for everybody with a background in robotics or similar
fields. We summarize the main facts here in order to enable
the usage of the library for people from other backgrounds
and give further reading tips. We are really trying to use not
more than the minimal amount of math, which suffices to get
a basic understanding and is required to be able to modify the
source code.

- can robots create art?

2nd Aschenbrenner Doris
TU Delft IDE
Delft, Netherlands
d.aschenbrenner @tudelft.nl

For the quick reader: Figure [T] wants to visualize the used
coordinate systems. The base coordinate system (red) is rooted
in the middle of the robot base with z following the robot
(perpendicular to the table), the = axis points towards the
canvas and y away from the paint containers. The canvas
coordinate system (green) is with x to the right and y to the
bottom. Thus, z points into the canvas.

.svg 2D image

l_>x
B
X

y

Fig. 1. Robotics problem of painting

First of all, it is important to understand that the source
image (displayed on the left top side) is a 2D image with a x
and a y axis (displayed in green). But the canvas is a 3D object,
which has a position and orientation in the three dimensional
space. The challenge, which is solved in the svg2urx library,
is to map this 2D image to the 3D canvas, so that a line in
the image from point A’ to B’ (green on the 2D image) is
transformed into a trajectory, on which the robot paints from
A to B (in red) with the brush.

Let us consider the tip of one specific brush, which will
paint on the canvas (without taking into account that the setup
enables the usage of multiple brushes, we will come to this
later). We call this brush tip the ‘Tool center point’ (TCP).
Obviously, we need to control the position of this tip in the
three-dimensional space in order to meet with a specific point
on the canvas. Let us regard the situation displayed in figure
in which the brush tip meets a specific point on the canvas,
which we call A. We assume a typical cartesian coordinate

Brush

Gripper

Canvas

Image
Display

4 relative relative
| position | position

3D 2D
color pots plane
canvas

Visualization

Camera

Calibration file l l Calibration file

Al

Calculate
picture

svg flle: trajectory
+ color

Fig. 2. Overview of the paintrobot project

system with the axes z, y and z. This coordinate system has
a point called origin where we start counting, so where z =
0, y = 0 and z = 0. Let’s define this at the middle of the
base of the robot. (We could also position it anywhere else. In
general, the robot coordinate system is distinguished from the
world coordinate system, but we root both in the robot base
here). Now, with this definition, the point A on the canvas can
be described by the coordinates x,, y, and z,, which is the
distance of the point with respect to the axes measured from
our base.

This position is not enough to determine the right position
of the robot, because we also want to know the orientation of
the brush with respect to the canvas — the brush could approach
the point A from different angles. In theory, it would also be
possible to approach the point from the back side of the canvas
(but we definitely would not want this). In order to specify the
right ‘direction’ of the brush, we can use either two positions
in the three-dimensional space, or by the orientation around
the axes, which is also known as roll ¢, pitch 8 and yaw 1.
So, if we want to describe the pose of the TCP (the brush
in our example) in point A we would formulate this as (z,
Yas Zas Pas Bas Va). We call this a ‘pose’, which consists of
position and orientation.

But how to come from one pose to another? Let us assume
that the robot’s TCP is in pose A and the controller wants
him to move to position B. In our implementation, we use the
‘URS’ from Universal Robots, which has 6 rotational axes. All
axes can be moved independently, for example manually via
the teach pendant. For further reading: If we have the position
of the axes (because we manipulate them for example with
the teach pendant) and want to know the resulting pose of
the TCP, the mathematical equations behind this are called
forward kinematics.

It is not intuitive for the novice user, to control the TCP (the
brush tip) with the axis positions, but it helps to get a basic
understanding of the robot. The main learning objective here
is, that there are multiple ways to achieve the desired pose
— the TCP most probably will not travel along the canvas
(although this is what we want to achieve). Furthermore,
it is not quite easy to move from one point close to the
canvas to another by steering the axes, because we can in
the standard mode ‘only’ manipulate the axes — the resulting
circular movement around the axes is not desired.

Fortunately, the robot is able to calculate the path from A
to B (instead of moving the axes manually). The robot needs
to solve the so-called inverse kinematics problem, in order
to determine, how it should move the axes in order to come
to pose B when it already is in pose A. But there might
be different ways to perform this movement, just as if it is
performed manually. The robot searches for the most efficient
solution. Thus, it is not a good idea to tell the robot to directly
move from A to B if both points are on the canvas, because the
path in between is some kind of circular movement (around
the robots axes) and will most probably go through the canvas
and either tear the canvas or break the brush.

After briefly explaining these problems, it is good to know,

Fig. 4. Painting ‘Random9’ 2019 by ‘Bob Rob’

that they already have been solved. There is the possibility to
switch the coordinate system, in which the TCP is moving. In
our case, it is possible to calibrate the coordinate system of
the canvas with respect to the robot’s coordinate system and
every movement can then be specified along this coordination
system (or reference frame). The calculation in the background
are still the same: The inverse kinematics problem is solved
in order to determine, how the axes should be rotated in order
to come from one pose to another. The difference is, that the
poses in the coordinate system of the canvas need first be
transferred to the robot’s coordinate system.

If we want to tell the robot to paint a specific line, we need
to make sure, that the orientation of the brush is known for all
points. A human person would eventually slightly move the
wrist so that the orientation of the brush differs. Although this
is of course possible with the robot, we use the easier way

and tell the robot, that it should use the same orientation, but
move the position along the coordinate system of the canvas.
An analogy to this is for example a human painter, who keeps
the wrist fixed, but moves the elbow, in order to paint a line.

It is important to understand, that most robotics applications
depend on accuracy on the one hand but also on velocity.
Movement in the joint-space is faster than movement in
recalculated canvas space, so it should be used for longer
movements.

III. ROBOTS, AI AND ART

As explained above, the underlying problem has already
been solved a long time and can be researched in the standard
literature under the mentioned terms, for example in [I].
Painting with liquid color still remains an engineering problem
which strongly depends on the application [2].

A better way to produce ‘paintings’ can be achieved by
3D printing, whereas a 3D printer can also be regarded as a
cartesian robot. Recent design research of TU Delft [3] showed
the application of 3D printing for the reproduction of fine art.
Here, 3D scanning is used to detect relief, color and gloss.

Using ‘robots’ as part of artworks has a long history,
and includes ‘moving’ objects, for example the work of
Jean Tinguely. Newer work naturally used the capacities of
industrial robots - the German artist collective ‘robotlab’ let
the robot for example generate random statements and write
them down during the exhibition [4].

The next step is to use some kind of machine learning or
artificial intelligence approaches instead of using randomly
generated ‘art’.

In 2015, creative agency M&C Saatchi detected the face ex-
pression of people who looked at their advertisement posters.
They used cameras above the digital posters and machine
learning algorithms [4]. Based on people’s reactions (happy,
sad, etc), the poster would try to change to a more pleasing
design.

In 2018, the painting ‘Edmond de Belamy’ by Paris-based
arts-collective Obvious was sold for 432,500 Dollars. The
painting was generated by an open source algorithm written
by the 19-year old Robbie Barrat, who is not affiliated with
the artist collective [6].

Currently, there is a well-recepted exhibition under the name
‘Artists and Robots’ at the Grand Palais in Paris [7]], which
summarizes the historical development and raises the question,
whether robots or artificial intelligence programs can really
create art.

Finally, there are research groups, for example Rutgers
University’s Art and Artificial Intelligence Laboratory, who
are investigating this topic further [§]].

IV. PAINTROBOT BOB ROB

A. Setup

The current setup is displayed in Figure 5] The industrial
manipulator ‘URS’ by Universal Robots has a 3D-printed tool,
which can hold four brushes. The source files for the tool can
be found at the paintrobot page [9]. Each brush is used only

Fig. 5. Performance ‘Bob Rob’

for one color, so that the brushes do not need to be cleaned in
between. An alternative would be to use brushes of different
size. The robot will move each brush to its color cup (left
bottom side), here the colors red, yellow, blue and purple are
used and contained in recyclable espresso cups. Next to each
color pot, a wireframe construction is placed over a second pot,
where the excessive paint is removed (dripping color can be
reused). The source files for the laser-cut color pot containers
is published as well [9]. The robot and the color pots are
fixated at the table. The canvas in this setting is contained in
a steel mounting frame which is welded to the steel table, on
which the robot is positioned. The canvas is screwed onto the
frame.

B. Painting

The robot starts in the home position Jpome, in the con-
figuration predefined by the manufacturer (all joints build one
line, which is perpendicular to the table).

The robot will collect paint for each path defined in the
.svg (for more on this, read section . For this, it moves
to the position Jpgintabove On top of the color pots using
a fast movement in joint space. The robot then changes to
cartesian space, moves above the right color pot and dives in.
Afterwards, it removes the paint on the second pot with the
wireframe construction and moves back to Jpuintabove-

The robot will then move to Jegnvasabove again in joint
space. From there, it will move in the pre-calibrated canvas
coordinate system and drive a trajectory of the mapped posi-
tions presented in the .svg.

It makes sense to arrange the .svg in such a way, that
longer paths are included twice (in opposite directions). This
results in the following behavior: If the path is too long, the
robot will collect color a second time and drive the trajectory
backwards.

It is very important, to ensure that save movement between
Jhome’ Jpaintabove and Jcanvasabove in jOiIlt space is POSSible,
so this should be tried out during the initial setup.

V. IMAGE SOURCES

The library is able to paint . svg files with the following

properties:

e The .svg needs to have the same size as the canvas.
Units need to be millimeters.

e The library only handles path elements, no transforma-
tions.

o Within a path element, only moves (M) and straight lines
(H, V, L) are supported (all other movements could be
implemented rather easily with the existing libraries).

« The color needs to be specified in the st roke attribute.

VI. USING THE LIBRARY

The operating PC needs a python 2.7 supporting operating
system (we used Ubuntu Linux) and needs to have the used
pythons libraries installed. The urx library uses the Universal
Robot script language and communicates with the URS via
LAN. The library svgpathtools is used to handle .svg
graphics.

A. Calibration

It is important to re-calibrate the positions to the setup, in
which they are used, or nothing will work. The brushes need to
be re-calibrated when they are exchanged and also the canvas
should be re-calibrated on every change.

Fig. 6. Brush tool of ‘Bob Rob’

First of all, the used brushes need to be calibrated. The end
of the brush is the tool center point TCP (as described above),
so nothing will work, if the parameters are wrong. The brush
tool is displayed in Figure [6] and is 3D-printed and mounted
to the robot. All brushes need to have the same length (sawn
off brushes have been used here) and are mounted on screws
which are stuck through the tool. If the brush is not even on

the screw, it should be moved, so that it does not change the
angle between the brushes.

As mentioned above, it is crucial, that a collision-free and
safe movement between Jhome, Jpaintabove ANd Jeanvasabove
is possible!

The position of the color pots Jpuintabove Can be calibrated
with a tape measure and adjusted by slightly changing values.
As the height of the wireframe construction might change, this
needs to be adjusted.

For the canvas, first of all J.qnvasabove NEEds to be defined.
Then, the origin on the top left corner (P0) needs to be
measured precisely by driving the robot to this position, so that
only some hair of the brush used for the calibration touches
the surface. The right left corner (PX) and the bottom left
corner (PY) need to have exactly this same distance to the
canvas, so the same brush should be used. We recommend to
choose the three points with a slight offset of the 80x60cm
canvas.

B. Painting program

The robot starts in the home configuration. The main
function is called paint_svg (). For each path element,
which is found in the loaded . svg, the following operations
are performed:

e move_to_paint (): Move from Juome 10 Jpaintabove)

e get_paint (): Move from Jpgintabove to the right
colorpot, move into color pot (color is specified in the
path element), move over color pot, wait for color to
drop off and remove paint from tip of brush

e move_to_canvas (): Move from Jpaintabove 1O
Jcanvasabove

e paint_path (): For each sub element in the path, go to
this position with respect to the canvas coordinate system.
The parameter ‘feed’ is used to press the brush more and
more to the canvas during the movement on the path.

VII. CONCLUSION AND FUTURE WORK

This work was conducted in a joint project initiated by
the ‘Kunsttage Sommerhausen’ together with the German
company ‘Awesome Technologies Innovationslabor GmbH’
and TU Delft Design Engineering. In the first exhibition of
the project where the pictures above were taken, we used very
basic image generation out of random variables and with some
external input (for example from the webcam) provided by
Tokeya Deep Data Dive. But there are many funny ways to
use existing Al toolboxes with this.

We are currently developing a Windows based tool chain
which will be easy to use for designers and further facilitate
the process of running the robot by further developing the
graphical interface. We are going to use this code for future
projects and for education and hope to learn from other
projects who are using our framework. So if you want to
collaborate on this - please contact us!

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]
(10]
[11]

REFERENCES

Hgele, M., Nilsson, K., Pires, J. N., & Bischoff, R. (2016). Industrial
robotics. In Springer handbook of robotics (pp. 1385-1422). Springer,
Cham.

Chen, H., Sheng, W., Xi, N., Song, M., & Chen, Y. (2002). Automated
robot trajectory planning for spray painting of free-form surfaces in
automotive manufacturing. In Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol.
1, pp. 450-455). IEEE.

W. S. Elkhuizen, T. T. W. Essers, B. Lenseigne, C. Weijkamp, Y. Song,
S. C. Pont, J. M. P. Geraedts, and J. Dik. 2017. Reproduction of gloss,
color and relief of paintings using 3D scanning and 3D printing. In
Proceedings of the Eurographics Workshop on Graphics and Cultural
Heritage (GCH ’17). Eurographics Association, Goslar Germany, Ger-
many, 183-187. DOI: https://doi.org/10.2312/gch.20171312

Robotlab (2008). http://www.robotlab.de/mani/fest.htm. Exhibited in
‘Open Codes” 20.10.2017 02.06.2019 at ZKM, https://zkm.de/en/
exhibition/2017/10/open-codes,

Green, Ricki (2015). M&C Saatchi London launches first ever
artificially intelligent poster campaign, https://campaignbrief.com/
mc-saatchi-london-launches-fir/

Edmond de Belamy https://en.wikipedia.org/wiki/Edmond_de_Belamy

Spinney, Laura (2018). Can robots make art? Nature 557, 490-
491 (2018) doi: 10.1038/d41586-018-04989-2, https://www.nature.com/|
articles/d41586-018-04989-2

Mazzone, M., & Elgammal, A. (2019, March). Art, creativity, and
the potential of Artificial Intelligence. In Arts (Vol. 8, No. 1, p. 26).
Multidisciplinary Digital Publishing Institute.

Paintrobot Bob Rob, http://www.paintrobot.de

urx python library, https://pypi.org/project/urx/

svgpathtools python library, https://pypi.org/project/svgpathtools/

https://doi.org/10.2312/gch.20171312
http://www.robotlab.de/mani/fest.htm
https://zkm.de/en/exhibition/2017/10/open-codes
https://zkm.de/en/exhibition/2017/10/open-codes
https://campaignbrief.com/mc-saatchi-london-launches-fir/
https://campaignbrief.com/mc-saatchi-london-launches-fir/
https://en.wikipedia.org/wiki/Edmond_de_Belamy
https://www.nature.com/articles/d41586-018-04989-2
https://www.nature.com/articles/d41586-018-04989-2
http://www.paintrobot.de
https://pypi.org/project/urx/
https://pypi.org/project/svgpathtools/

	Introduction
	Robotics background
	Robots, AI and art
	Paintrobot Bob Rob
	Setup
	Painting

	Image sources
	Using the library
	Calibration
	Painting program

	Conclusion and future work
	References

